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Abstract--This paper presents a numerical investigation of fully developed laminar convective heat transfer 
in a helicoidal pipe with a finite pitch coiled pipe. Three major parameters are identified to affect laminar 
convective beat transfer in a helicoidal pipe : the Dean number, torsion and the Prandtl number. The results 
indicate that torsion will increase the temperature gradient on one side of the pipe wall and decrease the 
temperature gradient on the other side. In the case of a small Prandtl number fluid, the Nusselt number 
declines slightly as torsion increases. However, in the case of a large Prandtl number fluid, the Nusselt 
number is significantly reduced as torsion increases. The predicted results for the limiting cases are also 

compared with other numerical and experimental results. 

INTRODUCTION 

Due to their compact structure and high heat transfer 
coefficient, coiled pipes are used extensively in heat 
recovery systems, compact heat exchangers, storage 
tank heating systenas, and refrigeration for the chemi- 
cal, dairy, drug and food industries. Because of interest 
in their practical applications, numerous inves- 
tigations have been carried out in this field. However, 
although many researchers claim that their inves- 
tigation deals with the helicoidal pipe, their analyses 
are actually based on the toroidal pipe, since the effect 
of the coil pitch is absent in them. The pitch of the 
coil will create a rotation force (torsion force), which 
may significantly affect the flow pattern. Considering 
the effects of torsion will dramatically increase the 
complexity of the study. A survey of the open litera- 
ture indicates that only a few papers have been pub- 
lished in this area to include the effects of torsion on 
laminar forced flow in a helicoidal pipe [1-9]. 
However, none of these papers discusses the effects of 
torsion on convective heat transfer in a helicoidal pipe, 
which is the motivation behind the present inves- 
tigation. For the purpose of distinguishing the ter- 
minology, the helicoidal pipe in this study refers to 
the coiled pipe with finite pitch and the toroidal pipe 
represents a coiled pipe with zero pitch. 

In the toroidal pipe, two symmetrical loops of sec- 
ondary flow are formed due to centrifugal force [10]. 
In the helicoidal pipe, torsion will distort the sym- 
metrical loops of the secondary flow. Early studies of 
helicoidal pipe flow largely relied on experiments [11- 
13]. A non-orthogonal helicoidal coordinate system 
was introduced [1] to formulate the Navier-Stokes 
equation for helicoidal pipe flow, and this problem 
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was eventually solved by applying the perturbation 
method for the case of small curvature and small 
torsion. It was concluded that, in the helicoidal pipe, 
both curvature and torsion can produce a first-order 
effect on the flow [1]. The Navier-Stokes equations 
were simplified [2] by assuming a small curvature 
using a non-orthogonal coordinate system, and it was 
found that the Dean number is the dominant par- 
ameter and that torsion has almost no effect on the 
axial flow rate. A transformation to render the non- 
orthogonal coordinate system to an orthogonal one 
was introduced [3, 4] and it was found that the effect 
of torsion on the secondary flow is of second order. 
Germano's coordinate system was used by Kao [5] to 
study helicoidal pipe flow in a substantial range of 
Dean numbers using both perturbation and numerical 
methods and it was found that at certain torsion- 
curvature ratios, the effect of torsion on secondary 
flow can reach an order of magnitude of one and a 
half powers. This study also concluded that, although 
torsion can significantly change the secondary flow 
pattern in a helicoidal pipe, the axial flow rate varies 
only slightly. An attempt was made [6] to resolve the 
controversy between the above-mentioned research 
[1, 3] by linking Wang's coordinate system with Ger- 
mano's coordinate system. A detailed comparison was 
made [7] between the non-orthogonal and orthogonal 
coordinates of refs. [1] and [3], and it was noted that 
the torsion effect on secondary flow in the helicoidal 
pipe depends on the frame of reference of the observer. 
Fully developed laminar flow in the helical pipe with 
a circular cross section was also investigated in that 
work by using the equation formulated by Germano 
[3, 4], except for minor changes in the nomenclature, 
and it was verified that torsion has a first-order effect. 
Recently, the double series expansion method was 
used [8], which perturbs the exact solution of a twisted 
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NOMENCLATURE 

a pipe diameter [m] 
De Dean number 
f friction factor, equation (9) 
fc friction coefficient for a curved pipe 
f~ friction coefficient for a straight pipe 
Nu local Nusselt number, Fig. 8 
Nuc average Nusselt number for a curved 

pipe 
Nuh average Nusselt number for the 

helicoidal pipe, equation (10) 
Nus average Nusselt number for the 

straight pipe 
P dimensionless pressure 
Pr Prandtl number 
p pitch 
p* dimensionless pressure [Pa] 
R radius of the coil [m] 
Re Reynolds number, equation (6) 
r dimensionless radial direction 

coordinate 
r* dimensional radial direction 

coordinate [m] 
s dimensionless axial coordinate 
s* dimensional axial coordinate [m] 
T dimensionless temperature 
T* fluid temperature [K] 

Tb bulk temperature [K] 
T* dimensional bulk temperature [K] 
Tw wall temperature [K] 
u, v, w dimensionless velocity components 

(u*, v*, w*)/(v/a) 
u*, v*, w* velocity components in the 0, r 

and s directions [m s -I] 
Wb dimensionless average axial velocity 
w* dimensional average axial velocity 

[m s-l]. 

Greek symbols 
dimensionless curvature, xa 

0 angle 
x curvature [m- l] 
2 dimensionless torsion, T/x 
v kinematic viscosity [m 2 s-i]  
p density [kg m -3] 

torsion ; shear stress 
~b angle 
o) function, equation (7). 

Subscripts 
r radial direction 
s axial direction 
~k tangential direction. 

circular pipe to obtain the solution of the helicoidal 
pipe. The perturbed parameters are dimensional cur- 
vature, x, and dimensional torsion, z. It was concluded 
that inconsistency of the torsion effect on the sec- 
ondary flow between [1] and [3, 4] can be quan- 
titatively explained by the different coordinate systems 
used. None of the above mentioned research dealt 
with laminar convective heat transfer in a helicoidal 
pipe with a finite pitch coiled pipe. 

Numerous studies have been conducted to examine 
heat transfer behavior in the curved pipe [14-23]. 
Excellent reviews can be found in refs. [24-30]. It 
must be emphasized here that, in many theoretical 
and numerical studies, the researchers have claimed 
they considered the effect of pitch on convective heat 
transfer in a helicoidal pipe. However, inspection of 
their equations reveals that either only part of the 
effect of torsion is considered, or an improper 
expression for the torsion term is applied. For  
example, a modification was made [31] in the for- 
mulation of the toroidal coordinate system to predict 
the pitch effect by simply replacing the original axial 
velocity by the product of the axial velocity and the 
inclination angle. In that solution, therefore, the axial 
velocity and temperature distributions for the case of 
pure forced convection are retained in the symmetry 
no matter what pitch value is used, which is physically 
unreasonable. Recently, Yang et al. [32] studied the 
heat transfer behavior in a helicoidal pipe. The objec- 

tive of the present paper is to explore the effects of 
torsion on laminar forced convective heat transfer in 
a helicoidal pipe with a finite pitch coil. The flow is 
assumed to be hydrodynamically and thermally fully 
developed with constant fluid properties, and the 
effects of free convection are neglected. Uniform axial 
heat flux with a peripheral constant wall temperature 
boundary condition is applied in this investigation. 

PROBLEM FORMULATION 

Consider a helicoidal pipe with diameter, 2a, coil 
diameter, 2R, curvature, x, and considerable pitch, 
p, as shown in Fig. 1. The steady laminar flow of 
incompressible Newtonian fluid in the helicoidal pipe 
is assumed to be hydrodynamically and thermally 
fully developed. The fluid properties are independent 
of the temperature. The helicoidal pipe is subjected to 
a thermal boundary condition of uniform axial wall 
heat flux with a uniform peripheral wall temperature. 
The coordinate system of  [4] is applied here. In Fig. 
1, s*, r* and ~k indicate the dimensional axial coor- 
dinates, where 0 = 0 + 4~ and 

4~(s*) = ~(s)  ds ' .  
0 

As noted by refs. [4] and [7], the helical coordinate 
systems (r*, 0, s*) are orthogonal systems for fully 
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Fig. 1. A schematic representation of a helicoidal pipe. 

developed laminar flow without consideration of vis- 
cous dissipation and the effect of free convection. The 
continuity, momentum, and energy equations can be 
written in the following dimensionless form ; 

r 00 +~r  +-+war uc°s~k+vs inO-23w = 0 

d(UU) 1 d(ruv) 1 ~p ~ +  
r d~ r ¢9r r cg~k 

/ du\  uv 
r 

l d  d 
+ 7 ~r (rt'r~" + 7-~ (Z~,¢,) 

+ - -  + e 0 ) ( % ,  COS ~ + Xr* s in  ~k + %, cos ~k) 
r 

1 3(uv) 1 d(rvv) dP 
r d~k r ,gr dr 

1 O(rz,,) 1 d(~r~,) 
-t - - +  

r dr r ~k 

+e0)w wsi:a 0 + 2  + - -  
r 

-vsco[uco,;O+vsinO-2~] 

~'*¢ "~- ~O(~'r, COS I~/-I- "Crr s in  6 -  z,, sin $) 
r 

(1) 

(2) 

- eco2 ~ (zrs) (3) 

O(uw) 10(rvw) dp 
ray4 r Or --0)~s 

- 2 w ~ 0 ) [ u c o s $ + v s i n O - 2 ~ ]  

1 0  + 1 0  
+ r ~-~ (z~,,) r ~r (r%~) 

+ 2tco (%~ cos ~, + z~ sin ~b) (4) 

u dT dT w dT 
; - 

1 [d2T 1 dT 1 d2T 
=PrrL~-r2 + r ~ - r ' ~  r 2 d~k 2 

/ dT 1 
+ eo) ~sin ~b ~r-r + cos 0 r ~-~ 

+ 0 ) 2  (82~2 a2T 2 - ~T ~-~ + ,~ ~r0) cos ~k ~ 

2e 2e2r cos tP)]. (5) 

In equations (2)-(4), z represents the shear stress, 
which can be expressed in terms of velocity gradients 
and fluid viscosity. In the above equations, the dimen- 
sionless variables are defined as follows : 

:2Pq 
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/ 2 0 w  ~O + toev sin ~O) T, = 2 ~-o9~ 2 ~  +oJtucos 

r~  = ~-~ + r~r r 

I/ 2 0 U  1 Ow_coeWCOS~b) (6) 
/ 

r* S* U* V* W* 
r = - -  t7 s = - -  a U = Y-'~ V = v-Ta W =  T l~a 

P = p * / ( p v 2 / a  2) e = x a  2 P 
R 

T = ( T * - T * ] / (  d T * )  Wb(2a) 
\ a2w*/-------~]/\ - ds*]  Re - v 

1 
De = Re~ 1/2 co - 1 +ersin~b (7) 

Tw and Tb are the wall and fluid bulk temperatures, 
respectively. They are the function of the s location. 
The associated boundary conditions for equations 
(1)-(5) are 

@ r = l  u = 0  v = 0  w = 0  T = 0 .  (8) 

For  fully developed laminar flow, the friction 
coefficient and average Nusselt number can be ex- 
pressed as 

dP / 
f R e  = 2 ds  /wb (9) 

SUb = Pr/Yb (10) 

where Wb and T~ are the bulk axial velocity and bulk 
temperature, respectively, and are defined by 

Wb = - wrdrdO (11) 
7ZJO dO 

= - -  wTrdrdO. (12) 
7~Wb do do 

SOLUTION METHODOLOGY 

Since the helicoidal pipe can be viewed as a com- 
bination of curved and twisted pipes, the fluid flow is 
no longer symmetric. Therefore, the entire cross sec- 
tion of a helicoidal pipe is used as the solution domain. 
A uniform grid is generated in both the r and ~b direc- 
tions. The governing equations, (1)-(5), are approxi- 
mated with finite difference equations by the control 
volume-based finite difference method for u, v, w and 
T. The convection--diffusion terms are discretized by 
a power-law scheme [21]. The remaining terms in the 
governing equations are approximated by the central 
difference method, which is a scheme for secondary 

accuracy. A staggered grid system is employed for the 
velocity components, u and v. The SIMPLE algorithm 
is applied to handle these equations. Since equations 
(1)-(4) are independent of temperature, they can be 
solved together first. When a convergent solution for 
velocities is reached, equation (5) is then solved to 
obtain the temperature profile, and the Nusselt num- 
ber is calculated. The convergence criterion of 

II k + ~  % -~11oo ~< 10 -5 (13) 
II ¢,~+1 II 

is employed for all nodes, where ~ refers to u, v, w 
and T. Subscript, /j, represents the arbitrary nodes, 
and superscript, k, represents the kth iteration. 

A computer code was developed based on the above- 
mentioned solution methodology. In order to verify 
the accuracy of the computer code, the predicted 
results have been compared with those available in 
the open literature. As mentioned in the introduction, 
no data were found in the open literature for laminar 
convective heat transfer in a helicoidal pipe with a 
finite pitch coil. Therefore, the following two com- 
parisons are provided in this study: (1) the friction 
coefficient for the helicoidal pipe and (2) the Nusselt 
number for the toroidal pipe. An experimental study 
was conducted [33] on helicoidal pipe flow with an 
appreciable range of curvature and torsion. It was 
found that torsion has almost no effect on the friction 
coefficient, and all test data can be presented by one 
equation in the laminar region : 

- [ ( D e R e ~ ] 4 °  
fc 1+0.033 log~0 (14) 
f~ ~dP/ds }J " 

A comparison of  our predicted results with equa- 
tion (14) and refs. [33, 34] is given in Fig. 2. The 
predicted numerical results agree well with the results 
of  the correlation equation. Figure 3 is a comparison 
of the fully developed average Nusselt numbers for 
the toroidal pipe. The lines indicate our predicted 
results. The solid circle, square, and triangle indicate 
the experimental and predicted results by refs. [34, 23, 
15] for the case of  Pr = 5. The hollow circle, square 
and triangle indicate the results by refs. [34, 23, 16] 
for the case of Pr = 0.7. Good agreement exists 
between our predictions and the results of the other 
researchers. 

A grid refinement study is also conducted in the 
present analysis to determine an adequate grid dis- 
tribution. Uniform grid distributions (angular direc- 
tion grids x radial direction grids) of  20 x 20, 30 x 30, 
40 x 40, 60 x 60 and 80 × 80 were tested. Table 1 is a 
comparison of the predicted results for fully developed 
Nusselt numbers at different grid distributions. An 
axial pressure gradient of dP/ds = - 3000, curvature 
of e = 0.2 and Prandtl number of Pr = 1.0 were 
applied during the calculation. With the solution of  
30 × 30, 40 x 40 and 60 x 60, the values of Re, De, f 
and Nu at zero grid size have also been predicted by 
the Richardson extrapolation method [36]. The table 



L 
L 

5.0 

4 . 5  

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

Laminar forced convection 

/ 
o PRESENT PREDICTION. / 

/ 
- -  Mishra & Gupta [311 / 

. . . . . . . .  I . . . . . . .  I 

10 10Z 10 3 2x10 3 

(oo-,o) 
d p / d s  

Fig. 2. comparison of the dimensionless friction coefficient. 

857 

40  

30 

20 

NI c 

10 

Pr=0.7 Pr=5 • 
K~b & Seader (35] 0 • e l  

~ 1  et al. [22] [3 • • o J "  
Dravid et al. [ 15 ] • • 

Mod&Nakayan[16] zl • ~ A [] 
Present Study _. _ • ~ 0 . - 

• A s S S S ~  

O 

' ' ' ' I . . . . . .  I 

50 1 0 2 1 0 3  

De 
Fig. 3. Comparison of the average Nusselt number vs the Dean number for a curved pipe. 

indicates that the 40 x 40 grid arrangement ensures a 
satisfactory solution, and the results presented in this 
paper are based on the calculation of  the 40 × 40 grid 
size distribution. 

RESULTS AND DISCUSSION 

One can observe from the governing equations that 
dimensionless parameters, e, 2, dP/ds and Pr, are inde- 
pendent variables affecting the characteristics of  fluid 

Table 1. The predicted results and changes with grid arrange- 
ments 

L x M Re De f Nuh 

20 x 20 388.4 173.7 31.2 11.58 
30 x 30 391.8 175.2 30.9 11.39 
40 x 40 391.0 174.8 31.0 11.26 
60 x 60 389.9 174.4 31.1 11.24 

Zero grid size 389.6 173.6 31.3 11.24 

flow and heat transfer in a helicoidal pipe. According 
to the definition used in this study, Re and De (defined 
by Re el/2), is a dependent variable during the numeri- 
cal calculations. Generally speaking, the temperature 
distribution in a helicoidal pipe is largely dependent 
on the secondary flow pattern in the cross section. 
Therefore, the secondary flow pattern and the tem- 
perature contour  will be discussed simultaneously. 
Figure 4 shows the vector plot for secondary flow at 
a different 2 subject to the conditions of  De = 140 and 
e = 0.2. In each of  the figures, the left side indicates 
the inner wall, and the right side refers to the outer  wall 
of  the helicoidal pipe. This definition is also applied to 
all other figures. Figure 5 indicates the temperature 
distribution affected by torsion, which is obtained 
under the same conditions as in Fig. 4. 

When 2 = 0, the coil pitch is equal to zero. This 
indicates that the helicoidal pipe will be the same as a 
toroidal pipe. Figure 4(a) shows that two symmetrical 
vortices exist in the cross section. The flow is directed 
from the inner wall towards the outer wall in the center 
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Fig. 4. The secondary flow pattern for D e  = 140 and e = 0.2. 
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Fig. 5. The temperature distribution in the helicoidal pipe for D e  = 140, e = 0.2 and P r  = 1.0. 
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region and then returns to the inner wall along the 
top and bottom of the walls. Figure 5(a) indicates 
the corresponding temperature distribution. Since the 
temperature of  the wall is lower than that of the fluid, 
the temperature of' the fluid returning along the solid 
walls to the inner wall is lower. This low temperature 
fluid is then carried into the interior of  the pipe along 
the centerline. As a result, the high temperature iso- 
thermal contours are pushed toward the outer wall. 
However, the temperature contours remain sym- 
metrical to the centerline in this case, as seen in Fig. 
5(a). 

Figure 4(b)-(d) exhibits the secondary flow pattern 
in the helicoidal pipe with a finite coil pitch. In this 
case, 2 :/: 0, and it can be observed that the two vor- 
tices of the secondary flow become asymmetrical. One 
vortex is enlarged and the other shrinks. For  example, 
when 2 = 0.5, the top vortex in Fig. 4(d) is much 
larger than the bottom one. It is worthwhile to note 
the movement of the "eyes" of the two vortices. When 
2 = 0.1, the location of the "eyes" is almost 
unchanged compared with Fig. 4(a). As 2 increases, 
Fig. 4(c) and (d) shows that both "eyes" have moved 
toward the inner wall. However, the "eye" of the 
bottom vortex moves much faster than the "eye" of 
the top vortex. This is due to the bottom vortex 
becoming weaker than the top vortex. Figure 5(b)- 
(d) indicates the corresponding temperature contours. 
Comparing with FiLg. 5(a), these figures indicate that 
the isothermal contours turn clockwise when torsion 
is applied. This is primarily due to the fact that the 
additional rotation of the secondary flow created by 
torsion pushes the high temperature region downward 
and rotates as well. In fact, the larger the 2, the larger 
the angle of rotation. For  example, at 2 = 0.5, the 
centerline of the high temperature contours is no 
longer coincident with the centerline, but in this 
case, it is approximately 70 degrees from the center- 
line. 

Figure 6 shows the effects of the Dean number on 
the temperature distributions in the cross section of 
the helicoidal pipe in the case ofPr = 1.0 and 2 = 0.1. 
The Dean number changes from 40 to 180. It is seen 
from this figure that the high temperature contours 
are pushed to the outer wall due to centrifugal force. 
As the Dean number increases, the contours rotate 
at a large angle frc,m the centertine and distorts the 
symmetry. The dashed line in the figure is drawn to 
represent the pseudo-symmetrical line of the iso- 
thermal contour. It seems that the deviation angle 
of the pseudo-symmetrical line from the horizontal 
symmetrical line of the pipe becomes larger as the 
Dean number increases. The Nusselt number, shown 
in Table 2, indicate,'; that it is a function of De and 2. 
For  purposes of comparison, the Nusselt number for 
the fully developed straight pipe with an (~) boundary 
condition, Nu = 4.36, is used as a reference value. It 
can be seen from Table 2 that the Nusselt number 
significantly increases as the Dean number increases. 
At a small Dean number, increasing 2 can slightly 

reduce the peripheral average Nusselt number. In 
moderate ranges of the Dean number, a sizeable 
decrease in the Nusselt number can be observed with 
a large 2. For  example, the Nu is reduced almost 8% 
for the case of De = 180 and 2 = 0.3. As the Dean 
number increases, the temperature gradient near the 
outer wall region will increase and decrease near the 
inner wall region. As torsion is applied, the tem- 
perature gradient will increase near the bottom half 
of the wall and decrease near the top half wall region 
compared with the case without torsion. However, the 
heat transfer increase (a higher temperature gradient 
in the wall region) in the bottom half cannot com- 
pensate for the decrease in the top half. This results 
in the overall Nusselt number decrease. As the Dean 
number increases, this imbalance of the heat transfer 
between the top and bottom wall region will increase. 
This results in the torsion effect on the Nusselt number 
increase as the Dean number increases. 

The effects of the Prandtl number on the tem- 
perature distribution are depicted in Fig. 7. The Dean 
number remains at 140 and 2 = 0.1. A corresponding 
secondary flow pattern can be seen in Fig. 4. An ellip- 
tical-type isothermal contour is observed in Fig. 7(a) 
when Pr = 0.2. The temperature gradient on the outer 
wall is higher than the inner wall, and this non- 
uniformity of the temperature gradient is not sig- 
nificant. When the Prandtl number is equal to 1.0, the 
isotherms deform into a moon-like shape. In this case, 
the isotherms rotate clockwise. The maximum tem- 
perature gradient appears at a location at the bottom 
part of the outer wall. However, when Pr = 5.0, the 
moon-like isotherms distort and two crescent-shaped 
isotherms appear. This is the result of cold fluid with- 
drawing from the inner wall to the outer wall. There- 
fore, the temperature gradient at the top and bottom 
of the helicoidal pipe is greater, except for the outer 
wall. As the Prandtl number increases further, two 
more definite crescent shaped isotherms appear in the 
cross section of the helicoidal pipe. The temperature 
gradient at the inner wall increases obviously in this 
case. In addition, one can observe from an overview 
of Fig. 7(a)-(d) that the temperature gradient on the 
wall increases as the Prandtl number increases. There- 
fore, the Nusselt number is larger when the fluid has 
a larger Prandtl number. Table 3 shows the effect of 
the Prandtl number on the Nusselt number at different 
2. No matter what value ,l is, the Nusselt number 
increases as the Prandtl number increases. However, 
when the Prandtl number is less than 1, the Nusselt 
number is slightly reduced as 2 increases, but it reduces 
even more with a larger Prandtl number. This is at- 
tributed to the temperature distribution in the cross 
section, especially near the wall. In the case of a larger 
Prandtl number, the temperature gradient at the wall 
of the bottom half of the pipe is enhanced, but the 
temperature gradient at the top half of the pipe is 
remarkably reduced, especially with a larger 2 value. 
As a result, the overall number decreases as the 2 value 
increases. 
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a) De = 40 c) De = 140 
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Fig. 6. The effect of the Dean number on the isotherms at Pr = 1.0 and 2 = 0.3. 

In Fig. 8, the local Nussel t  n u m b e r  d is t r ibut ion  
a long the circumference of  the helicoidal pipe is dis- 
played for  the case o f  De = 140 and  Pr = 5. The  par-  
ameter,  2, varies f rom 0 to 0.3. I t  is clearly seen that ,  
when  2 = 0, the d is t r ibut ion  of  the Nussel t  n u m b e r  is 
symmetric,  the m i n i m u m  value of  the Nussel t  n u m b e r  
is located at  the inner  wall, and  the m a x i m u m  value 
is a t  the outer  wall. The Nussel t  n u m b e r  decreases 
a long the bounda ry  f rom the outer  wall to the inner  
wall. This  is a typical characteris t ic  of  the toroidal  
pipe. However,  when  2 # 0, the Nussel t  n u m b e r  is no  
longer dis t r ibuted symmetrically. The locat ion of  the 
m i n i m u m  Nussel t  n u m b e r  shifts upward  at  the inner  

wall, a l though  the value of  the m i n i m u m  Nussel t  num-  
ber  is nearly the same for different 2. In addi t ion,  no t  
only does the value of  the m a x i m u m  Nussel t  n u m b e r  
increase as 2 increases, bu t  its locat ion also shifts 
downward  at  the outer  wall. It is fur ther  seen tha t  the 
value of  the local Nussel t  n u m b e r  at  each locat ion (~k) 
decreases as 2 increases on  the b o u n d a r y  f rom 0 ° to 
180 °, but ,  on  mos t  of  the bounda ry  for 180°-360 °, 
the local value of  the Nussel t  n u m b e r  increases as 2 
increases. This  means  t ha t  the Nussel t  n u m b e r  on  the 
upper  ha l f  of  the helicoidal pipe decreases and  the one 
on  the b o t t o m  ha l f  increases as 2 increases. However,  
the range of  increase is less t han  the range of  decrease. 

Table 2. Nusselt number enhancement in a 
helicoidal pipe 

NUh/ NUs 

De 2 = 0 2 = 0.1 ). = 0.3 

0 l - -  - -  
40 1.357 1.350 1.329 

110 2.046 2.025 1.995 
140 2.306 2.280 2.202 
180 2.622 2.591 2.416 

Table 3, Prandtl number effect on the Nus- 
selt number (Nu~ = 4.36 is used as a ref- 

erence value) 

NuJNus 

Pr 2 = 0  2 = 0 . 1  ) .=0 .3  

0.2 1.450 1.445 1.443 
1 2,306 2.280 2.202 
5 3.554 3.378 2.890 

10 4.278 3.908 2.970 
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o) Pr = 0.2 c) Pr = 5.0 

b) P r -  1.0 d) Pr = 10 

Fig. 7. The effect of the Prandtl number on the isotherms at De = 140 and 2 = 0.1. 
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• / I 0.8 ", ~ \  .' . ' /  l 

0.6 0 o . . . . . .  0 o 
i 

o . 4  I 
I 

2 7 0  ° 

0 . 2  I I [ , 

0 ° 9 0  ° 1 6 0  ° 2 7 0  ° 

Fig. 8. Local Nusselt number distribution for De = 140 and Pr = 5.0. 

3 6 0  ° 

Therefore, the average value of  the Nusselt number 
decreases as 2 increases. 

CONCLUSIONS 

Convective heat transfer of  fully developed laminar 
flow in a finite pitch helicoidal pipe is numerically 
studied in this paper. The energy equation for heli- 

coidal pipe flow is derived based on the basic law of  
energy conservation. The heat transfer behavior in a 
helicoidal pipe is significantly affected by three major  
parameters:  De, 2 and Pr. It is concluded that the 
secondary flow is stronger when the Dean number 
increases. In this case, a high temperature gradient 
appears near the outer  wall o f  the helicoidal pipe. 
However,  rotation of  the temperature distribution is 
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at t r ibuted  to the effect of  torsion.  As 2 increases, a 
more  obvious ro ta t ion  occurs in the cross section. The 
shape of  the isotherms is also deformed by the tors ion 
effect. This is more  significant with a larger Prandt l  
n u m b e r  flow. The tempera ture  gradient  (or local Nus- 
selt number )  near  the b o t t o m  ha l f  of  the pipe increases 
markedly  and  the one near  the top ha l f  of  the pipe 
decreases. On the other  hand ,  the average Nussel t  
n u m b e r  increases as the Dean  n u m b e r  and  the Prandt l  
n u m b e r  increase, but ,  as 2 increases, the average Nus- 
selt n u m b e r  decreases slightly when  Pr is less than  1, 
and  declines significantly with a larger Prandt l  n u m b e r  
fluid. 
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